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1. INTRODUCTION

A single-determinant form for wave functions has been used extensively

in the quantum mechanics of many-electron systems.

In the usual Hartree-Fock method, single-determinant wave functions
are used with a restriction that two electrons with spins « and § are put
into the same space orbital. A single-determinant wave function with this
restriction is an eigenfunction of the total spin operator O° . The Hartree-
-Fock method has proved to be very useful in the theory of atoms, molecules

and solids.

In the unrestricted Hartree-Fock method, single-determinant wave
functions without the above mentioned restriction are used. This allows us to
treat, in a compact form, the exchange polarization and the correlation of
electrons with antiparallel spins. However, the unrestricted Hartree-Fock
method has a disadvantage. Wave functions used in the method are in general
not eigenfunctions of the total spin but are linear combinations of eigenfunctions

which have different eigenvalues.

It is of some interest to see how much of each spin eigenfunction is

contained in the single-determinant wave function.

2. FORMULATION OF THE PROBLEM

Any antisymmetric wave function of an N-electron system can be written

in the following form,

T(EEp,~ En)= A [W.(m,fzx“ Iy)8(01,05, 08)) - 21

where ﬁi stands for the space and spin coordinates [ and o respectively
of the i-th electron. M- is the idempotent antisymmetrizing operator. By using
permutation operators P and their parities € P’ the antisymmetrizing

operator A is expressed as

1
o -‘-@EEPP (2.2)

The wave function ¢ is in general a linear combination of pi.re spin

states:

®=20Bgnm , (2.3)
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2
where &g ,  is an eigenfunction of $“ and S$z with the eigenvalues S(S + 1)
14
and M respectively (h=1).

This decomposition is of physical importance if the Hamiltonian does not
involve spin operators. An expectation value of a spin-free operator f can be

expressed as

@, ®
=§p“@»4<f>&M ’ (2-4)
where
We ;?@ é) ) 2 0, (S%wslMﬂ ) (2.5)
and
<f&M=g%i£E§&) , (2.6)

(Dsm. Bsm)

when < (bs M CPS M > is not zero. When the Hamiltonian of the system is spin-

-free, we have
E =12 WsMm ES,M . (2.7)
SM

This equation shows that at least one of the energy expectation values ES M is

lower than E unless all Es M are equal to E . By selecting from ¢ a

suitable spin component d)S M * Ve have a wave function which is not only a
’

spin eigenfunction but which has a lower energy expectation value.

The analysis is also useful in interpreting the function @, (2.1). This
is in some cases (e.g. a single Slater determinant) much easier to handle than
its components ¢S.M . If we know the values of mS.M and < f >S.M , we
can better interpret the nature of the simple form (2.1). One of the basic

problems hereisto determine the weight W M
14

In the following we shall investigate a special case in which the spin
part © of the wave function (2.1) is a simple product of spin functions Yi(o-i)
which are either a(ci) or 6(¢ri):

0(01,09, 058 ) =Y1 (07 )Y¥2(02 ) yy(oy) . (2.8)
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The spin function @ is an eigenfunction of SZ « If we denote the number of a
and B functions in (2.8) by N‘1 and N‘3 respectively, the eigenvalue of Sz
(M) is expressed as

i
2

In order to evaluate g M it is convenient to introduce the spin
’

M = (Nq‘— NB) . (2’9)

operator OS M which projects out the component of the pure spin state:
’

2 _

{$°- S(S+1)} Og O ,
{Sz-M}0sm =0, (2. 10)
& Osm = 1

We note that this operator works only on the spin part of a wave function. For

any wave function
$=12c¢ Wi (1,15, - ,IN)@i(C1,02.'“,ON ),
i

o

S, M ® is expressed as

Osm®= Zc; ¥ (0 @) .

Since the wave function under consideration is an eigenfunction of Sz
with the eigenvalue M, we shall drop the subscript M in the following unless

it causes some ambiguity.

The weight wg for the wave function & can be written as
(05 8,05 3 (UO,054V ©)
YsT .5 (UG AU

I ed¥, P (8,05 P°®

L exY, P yy¢e,Pey . (2.11)

where P* and PY denote the corresponding permutations of the space and the
spin coordinates respectively. Similarly we obtain the expectation value of a

spin-free operator f,



(Os &.f 05 &) (VB0 AU O)
T (05 305 ® (UO,0AV6)

T €p (WP W (B,0,P°8)
2 ep Y, P'W (8,0 P°O) - (2. 12)

We shall derive an explicit formula for <@, OSPU@) > in the next section.
In sections 4 and 5, the weights wg derived from a single Slater determinant

are given, and the behaviour of the wg -values for large N is discussed.

3. CALCULATIONS OF <@, osp"®>

Because we assumed the form (2.8) for the spin part ® , for any permu-
tation P we can find a permutation Q(P) which brings € and P’® into the

following forms:

QOe=a(Ma2)-a(m+M)B(n+M+1) - p(2n) = o , (3.1)

QP°O=all) - aln+M=-i)g(n+M=-i+1)- B(n+M)x

xa(n+M+1) - aln+M+i)B(n+M+i+1)B(2n)
(3.2)
=f; | (2n=N).

Here the integer i(P) is the number of a-functions in @ which are changed
to p-functions in P’e . The number i(P) is uniquely determined by the

given permutation P .

Using the commutability of OS and Q° , we obtain
(0,0sP°0) = (Q°9,3° 05 P°0)
=(Q*0,0;’P°)

=<fo,OSfi>E Csli (3.3)
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In order to calculate the value ¢ it is convenient to divide the

S,i
total number of electrons into four groups A, B, Cand D . A, B, C and D
stand for the first n+ M - i electrons, the second i electrons, the third

i electrons and the last n+ M - i electrons, respectively:

1, 2, v, n+ M -1,
n+M-i+l,n+tM-i+2, ..., n+ M,
n+M+4,n+M+2, ..., n+M+1i,
n+M+i+t{, n+M+i+2, «c., 2n.

Cauw»

For example when we write CD, this means the combined groups of C and

D, i.e. thelast n - M electrons.

We introduce the symbol Y (s m;p) for one element of an orthonormal
complete set of simultaneous spin e1genfunct10ns of S and Sz with the eigen-
values s(s+ 1) and m respectively. K denotes an electron system which can
be any of the groups defined above. p specifies one of the spin functions with
common s and m , to differentiate degenerate functions. We adopt the usual

convention for the relative phase of these functions 1):

(Sxt i Sy) Ye(s,mip)=Jsgm)stm+)Y (s, m1;p) . (3.4)

2
As the element of the set which has the highest eigenvalue of S
(s = NK/Z, N is the number of electrons in the group K ), we choose the

following function:

YK(NK/Q,NK/2)=0L(1-~ a. _ (3.5)

We may drop p in this case since (3.5) is the only function in the set with the
eigenvalues s = m = NK/Z . From (3.4) and (3.5), we obtain

Ye(Ne/2. ~N¢/2)=B BB . (3.6)

An orthonormal set of spin functions of the system ABCD can be obtained

by coupling Y AB and YCD in the following manner:

Yapep(S. Mk ) =Yygcpls.m: s's"u 1)
=m§n”YAB(s,m; WSt ) x

x(ssm;sim’'l s s's,m). (g



-6-

Here (s'm's"m"|s!s"sm) is the vector coupling coefficient %)
(s:m’ Sim'ts's”s,m) = 6(m'+m'= myx
(2s+1)(s'+ S-sh(s-m" ) (s-m" s+ ms- m)! V2
“|(s* 5% s+)i(s-o+ S)(-s+s+s)(s+ m)(s'+ m")!

‘5 (_Dws'- m’ (s+* m+v )i(Srs-m'-v)l
vi{s-m=-Vv)i(s-m-v (s s+ m+v) * (3.8)

Since

Osm = E Yagco(S, M Magep(S.Mip) - (3.9)
we obtain

Cs,i =;i (o Yasco(S, Mt D Vagen (S M ) ). (s, 10)

The functions fo and fi are expressed as

f = VAB(%—M',DLM ) Vco(nEM,‘ ”EM,) S (e
and Mo M .
£ =VA(n+2~x' h+2—l) Yy (_é_'__é_)x
’ M= 3.12
xyc(z_l %) YD(n ~M - ll_n r:\ZA Ly (3.12)

Therefore, the terms of the right side of (3. 10) vanish except for the following
v .

ABCD *
. n+M n- N+ M r n—M Yy
Yeco(SM:—— 2 e (—— m")pl——, m")
x‘(n+M'm,ln—M n'Yln+M n"M,S,M),

2 2 2
B (3.13)



Here
n+ M - M-i i
vAB( E ,m)-m'Zm”vA(D_t_z___l'm)vB(_éL.lm )x
(M- iMoo neM
( ,m,z,ml 5y m)
(3. 14)
and | |
Yool n2—M'm )=mZm,\(:( —é—,m')YD(D—:-%A—'—I’m")x
w{ iy DN=M-i i i Nn-M~ji n-M (3.15)
(z.m, 5 ml2 5 ’2'm).

Using (3.8), (3.11), (3.12), (3.13), (3.14) and (3.15), we find

Cs,i= <fo.YAaco(5'M:D%MfD“§—M ) Mageo(S.M: n; M nEM )50

=(er n+M n-M n-M | n+M n-M,S,M )x

2 2 - 2 2 < 2

. (n+M—i N+M=| ,l__x_imM—i i n«M n+M-2i)x‘
2 2 2.2 2 2. 2 .+ 2

y (_i i n-M-i_ n-M-i |_i_ -M- n—M_n—.M-.?i)x
2 2. 2 2 2 2 « 2 2
(n+MNneM-2i n-M _nN-M-2] n+M n-M

(ST 7 s M)
M- (S-M+i-

(n-M-i)i (N+M=i+Vv J(S-M+ij-v ) 5.16)

=25 )51 o D VIG-VIS-M-V)I(N= S -i+ V)

_(rge{ )'(S+M)' {(S~M+v )1}
=25+ )= GoMT 2 ‘)vl(s M+v —Dn-5 —v )25+ 1ev) . 10

It is convenient to use the expression (3. 16) in calculating the values Cs
vl

for some special cases. For example,
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=(2S+1) (ﬂ—M)l(n-i-M )l

©s.0 (N+S+1)I(N-S)! .
_ il(n+M =i)!

Sy, =MD

c _(n+MI(n-M)!

n,i (20)!

4. APPLICATION TO A SINGLE-DETERMINANT WAVE FUNCTION

When a wave function ¢ is a single-determinant wave function, the space

part ¥( [] ‘1[2 RERTR § N ) is a product of one-electron functions:
' lp([L[z‘ ’[N) = ¢1 (I1)¢2(I2) ¢N(IN) . (4'1)

We denote orbitals associated with a -spins by by ¢'2, oo ,‘ ¢n+M and
those with f-spins by Pyr Pps ever P e Without changing the total wave
function ® , we can transform the orbitals {¢} and {9} to {¢'} and {9'}

so that the only overlap remaining is between the pairs ¢i' and <pi" 3 b

Y 2 M

¢i =j=1ai] (bl , |=1, s, N+ M
n-M

q,)l' ‘='Z1bijkpj'1 l=l,2, ,n—M,

L (4.2)
(97 ¢ =(e/ 92 =0y,

@ley=6, /%, A =0

Using these transformed ox,_'bitals for the space part ¥, we find that

the inner product < ¥, P*Y> vanishes except when P* is a product of some
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interchanges of the pairs {¢i'. q:vi'} . When P interchanges the electrons of
t pairs {¢l'<l' cp'kl} , {4>'k2. cpi(z} e {q;'kt, q)‘kt} , Wwe see that

(W, P = Akt Ak2 - Akt .
€p = (1) (4. 3)
(P) =t

It follows from (2. 11), (3.3) and (4. 3) that
' n-M

k
wg = L (~1)A; cgy , ' (4.4)
k:o
where AkA is defined by the coefficients of the polynomial
n-M n-M K k ‘
MTO-XAx) =Z (-1)A, x*, (4-5)
k=1 k=0
For example,
A‘O = 1 ;
=2 A
A1 m k
1 2 2
A2 :"2—(% )\k)"% 7\k =?\]7\2+7k, >\3+ "'+)\1)\n_M+

* Azt o A A wa R
An-M:” }\k
k

In order to calculate (4.4), it is convenient to introduce the following
polynomial W(x) :

n-M . n-M k. .k
WO =TT - -R0x )=T (1B x. (4-6)
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By comparing (4.5) and (4.6), it is found that

&y (n=M )
Ak _,j=0(_1) (n M k)[(

The weights wg of a single-determinant wave function are, therefore, expressed

7| BJ . (4‘7)

as

~n-M k j+k (ﬂ— M __l);
s —k§0j§o(—1)(n‘M‘k)!(k—j)! Bj sk

n-Sn‘-M S-M+v is

(S M4y )IP(n-M-) 'B
=S I2SH 1+ ) vI(k- (S -M+v —k)!

2
S+ M)in {(S-M+v)i]
=(25+1 !
( )(S Ml ( >(25+]+V)1VIBS-M+V~
(4.8)
This can be written as an integral,
! S-M
S-M -
wg =(-1) 25+1 [ SMey_ypMd”  Wix) SWJX) dx . (4.9
: (S-M)! dx>"
When W(x) is given, we can derive wg using the above equation (4.9). *)
*) Since the first order density matrix completely determines the original

single -determinant wave function, it should also determine the weight

w We derive an explicit expression for W(x) in terms of the first

s "
order density matrix. ©g can be derived from W(x) by using eq. (4.9).
The first order density matrix of the wave function under consideration

has the following form:

p(E. &) =pl.r)alo) a(o)+ p(r.r')Blo) B(0),
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where

n+M ‘ ,A
SR A S

0
1

n-M ' '
= ilj—‘ PiXP; .
Since

(i AT =x)p-+ xppd )y = B(1-(1-A)x},

W(x) can be expressed as an expectation value of an n-M particle .

operator K(x):

W(x)= (U, K(x)¥) ,
where

(S N TN NIVEY CF DY SEIVD I
n-M
=,[T1 {(1-X)p.(r 1) + x ppu (i, 1))

and

w-(ILIIz,"',[n-M) =J(n -M )!’4@;({1 )@é([?)"@'n-M(In-M‘) .

It is seen that & 'K(0) is a projection operator,
A K(0)= UV,

and K(0) K(x) = K(x) . Therefore, we obtain an expression of W(x) in

terms of Py and p_ only:

W (x) =¥, K(x)W) =tr 4KO) K(x) =trAK(x) .
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© 5. BEHAVIOUR OF wg FOR LARGE N

" ‘We discuss the case when all A 's are equalto )\ . Then

CW(x)= =10 s

" Putting (5.1) into (4.9), we obtain

A : 1 '
o () = (”-M)‘“*)S'Ny M (1o xP™MO-(1 -0 3d X,
“’S(”‘(ZS”)(S_M)!(n-S)! 0>< (1-xPM0-(1-2)x ( X).
: , 5.2
The asymptotic form of (5.2) is derived in the appendix when § - M

is small compared with N2/3 ,

| (25+1)(n-M)>®*™M 1
we(A)~ exp {-=——(S-M-1)(S-M)-
o) (1-0)(n- M 420 P00 20W

__2M+(1 -2 P (n-M) (s o
2 {2M+(1-\)(n -M)}? (S-M+1)S +2)

3 A M
ST - oMy (S MAS M) sy

The equation (5.3) may be regarded valid over all possible values of S, since
both left and right -hand sides of (5.3) decrease rapidly as S - M 'becomes

large compared with Nl/z‘.

5a) Orthogonal case

Putting \ = 0 in the expression (5.2), we obtain
(n+M)I(n -M)!
(Nn-SM(n+S+1)

It is interesting to note that wS(O) is proportional to the number, fn S of
’

wg(0) = (25+1) (5.4)

linearly independent spin functions for given n (=N/2) and S,

£
wS(O) =_n___n4_5___ (5.5)

2 fn,‘ S’
S=M
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"' The asymptotic, form of w(O) is, from (5.3),

: (n M)S M S, ) _.
<o> (25 1)(—--—n M) P (S M ])(S”M)

_ I (5.6)
.'2(n+M)(S'M”,)(-S’M*2)} . -

For M = kn.((').<‘k <1), w
sequence, A

S can be approximated by a geometrical

(5 1)(m MM 2k (1 -k)S'M

(MM Tk \T+k (-}

It should be noted that (5.7) does not contain the number of electrons explicitly

Therefore, for a fixed k, wg does not change much when N. increases.

For M =0,
we ~(2i+1)exp<—sz+r?+1) 5.0
From (5.8), the expectation values of S, S° and S can be calculated as 1)
(9= S wg [23%xp- Sds = S /2 .
(H=¥ St jzsexp S)dS = n

3/r@_ﬁ/4

v <3, 25" g2
<53>~)ISwS f—ﬁ—exp(-—n—)ds

.T) The exact values are as follows,

s -__1.. ,22n 1;n|)2
-2 (2n)

(D =n+ 1 -(Sy,

2n2
L, (6n-5) n (n)?
(S = 4 (2n+1)!
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In figures { and 2, wg is plotted as a function of S and S/n
respectively for N = 10, 100 and 1000, using (5.8). We see from these
figures that when N increases, we spreads towards bigger N . However,
for large N, appreciable weight we is localized around the value Smax ~
~ 0.5\N . The second moment of the distribution around the average <S>

(D-(SY¥ ~ (1 -%)n ~ 0.107N .

5b) Non-orthogonal case

For M#0,

W (NMA) ~ wg {(1=A)n-M)+M, M0}, (59

since the factor (25 + 1)(n - M)S-M/(l -A)(n - M+ 2M/1 - )\)S'MH' decreases
rapidly compared with the exponential part in (5. 3), which may therefore be

regarded as 1 .

For M=0, 5
ws(n,0. 1) ~————-(21 f{;nem(- 5(»,15‘;\1)?)
~ wg 1(1-A)n, 0,01} . (5. 10)

It follows from (5.9) and (5. 10) that the weight in the non-orthogonal case for N
electrons can be approximated by the weight for 2 {(1 - \}{n - M) + M} electrons

in the orthogonal case:

wg(NMA) ~ wg{(1-ANn~-M)+M ,M,0} (5. 11)

When the overlap A\ increases, the distribution shrinks. This can be
seen from figures 3 and 4, where wg for some \ values are plotted as a

function of S for M =0 and M = 0.2 n respectively.
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APPENDIX

We define a function I by the integral,

i
Vo \
Ia,a,y(z)=a—! fOX“U—X)BU—zx) dx. (A1)
Then the weight (5.2) can be expressed as
A ‘ ~M( ] =
wg () = (25+1)40= ( )_(g)“ Loy sor g g (1-1). (&2

The maximum of the integrand in (A. 1) is given by one of the roots of

the following equation,

-

X0 1"X0‘ 1—2)(0

QB _ZY g @

Therefore,

(1+2)a+B+Z'v f1+2)a+(3+zy -4az(o+B+y)
2z (o +B+y)

- (A.4)

The order of x_ is the same as afpt z7).

Expanding (1 - x)ﬁ(l - zx)¥ exp;‘i)i in terms of x - x_, we obtain
o

L -xP(1-zx)" =
al

={a,+ a,(x -x)¥ax -x P+ -~}£ex - ax /X, )(A ?
=18+ QWX = +aAzR =% L SxP

Here
a, =( —xo)B(1-sz)Yexp a ,
(A.6)
o At )
2~ 2
and

ay =4ag O(a[ ]xo[‘}]) ) (A.7)



-17--

Intelgrating (A.5) over the range (x =0, X = ), we arrive at an

asymptotic expansion

I - ébbo+a2bi+ - (A. 8)
where
b ——]-f;“(x—x Y¥exp(-ax,/xq)dx (a.9)
k -G..' o - ‘ O< P 0 ’ .
bg = (Xo/a)q”, . }
A | A.10
b2= bo X20(Cl+2)/a2, ( )
Nk _[k+1]
by = b0 (xg a'l'27)) . (A.11)

From (A.5), (A.7) and (A: 11), we find the order of magnitude of ab,
, ) X
0 ()(072- ) k: even .,
= A.12
3 b/ag by = k- (a-12)
O(XO ZAB‘FZ'Y) k: odd

RememEering that the order of x, is the same as that of a/fp + zy) and
using (A.12), we can take the first two terms in (A.8) in order to calculate

log wg with the accuracy of order (B+ Z*r)"1 . Then we obtain
I - 1-""2(‘“2){ B, 2 IE
202 (1 -%0)2 (1 - 2xp)?
ael (A.13)

X
agnﬁ ~xo P(1-zx ) expa .

X

The expression (A. 13) is substituted into (A.2), and after some manipulation,
we obtain (5. 3).
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Figure 2 The weights w_(0) as a function of S/n .
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values of the overlap integral.



Figure 4 The weights w, asa function of S-M when M = 0.2 n for

several values of the overlap integral.
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